Touch Football Analysis

Topics: Excess post-exercise oxygen consumption, Exercise physiology, High-intensity interval training Pages: 6 (1755 words) Published: August 25, 2014
Stage 2 Training and Evaluating of Physical Performance: Meni Sakoulidis

TRAINING AND EVALUATION OF PHYSICAL PERFORMANCE:

ACTIVITY

AMOUNT OF TIMES DONE (In one half)

PASS/RECEIVE

16

ROLL BALL

9

TOUCHES MADE (successful and unsuccessful)

12

DODGE/WEAVE

8

3: Touch football involves the use of all three energy systems which are the ATP-CP system, Lactic Acid system and the Aerobic system. ATP stores are fully replenished after 2-3 minutes or 50% can be replenished after 30 seconds. The ATP-CP system is anaerobic which means there is no oxygen present and is a result of the breakdown of creatine phosphate. It is predominantly used in activities which are high intensity and last for up to 10 seconds. There are no fatiguing by products however ATP production is very limited.

The lactic acid system is also anaerobic however it lasts for around 90 seconds. It is the result of glucose being converted into lactic acid. Lactic acid is a fatiguing by product that builds up in the body after vigorous exercise and which force an athlete to slow or stop their activity. The final energy system is the aerobic system. This is the production of energy from the breakdown of carbohydrates and fats using oxygen. This system is used for low intensity activities of a long duration. The bi-products of this system are water, carbon dioxide and heat however they are not fatiguing which is why the aerobic system is efficient for long duration and endurance events.

A game of touch requires the use and interplay of all three energy systems; ATP-CP, Lactic Acid and Aerobic systems. The body simultaneously uses an energy system as there are many skills in touch that are of different intensities and duration. For roughly the first 2 minutes of the game, the intensity is submaximal as player 1 is getting into position. It can be seen on the heart rate monitor graph that there is a slight increase in heart rate indicating a small increase of intensity from walking to a light jog which can be shown in the table. The body is able work aerobically at this point as there is sufficient oxygen to meet the demands of the activity.

The heart rate monitor shows at point A that there is a steep incline of player 1's heart rate. This was caused by a series of dodges, sprints and side which increased the heart rate at 3 minutes into the game. As these activities are of a higher intensity and in such a short space of time, it creates an oxygen deficit. Because of this oxygen deficit, the body has to now utilise the ATP-CP system. However, the ATP-CP system is only momentary, lasting for 10 seconds, and therefore its store becomes mostly used up. The lactic acid system then becomes the more dependent energy system.

5 minutes into the game the heart rate graph shows a slight plateau which indicates that player 1 was working at maximal intensity. It is only possible to work close to this threshold for a limited time therefore intensity must drop causing the heart rate to lower. Player 1 was involved in a series of sprints, dodges and side stepping as well as playing the ball and passing. These are all high intensity activities which have caused the increase of heart rate on the graph.

After the first 5 minutes of the game, player 1 is substituted off. At this point, Excess Post-Exercise Oxygen Consumption (EPOC) takes place. EPOC allows the aerobic system to replenish ATP-CP stores and resynthesises lactic acid. The first stage of EPOC is called alactacid and restores ATP-CP. This process happens quickly in just 30 seconds and is important as the ATP-CP system is very important in a game of touch. After being substituted back on, player 1 will have had full stores of ATP-CP.

The same can be said for points C and D however at point D, exercice has ceased and a full EPOC can take place. The first stage of EPOC is the alactacid component which involves the restoration of ATP and CP stores and oxygen. This process...
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • Touch Football Participation Sociology (Explained using Figueroa's framework) Essay
  • Essay about Energy for Performance in Touch Football
  • Touch Football and Energy Systems Essay
  • Touch Football- Fitness Essay
  • Hpe-Touch Football Energy Performance Essay
  • Movie Analysis: Touch of Evil Essay
  • Touch Essay
  • Football at Slack Analysis Essay

Become a StudyMode Member

Sign Up - It's Free